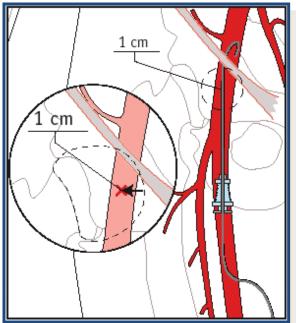
BAD KROZINGEN

T. Zeller, MD

University Heart Center Freiburg-Bad Krozingen, Germany

Interventionelle Therapie der AFC im kommen!

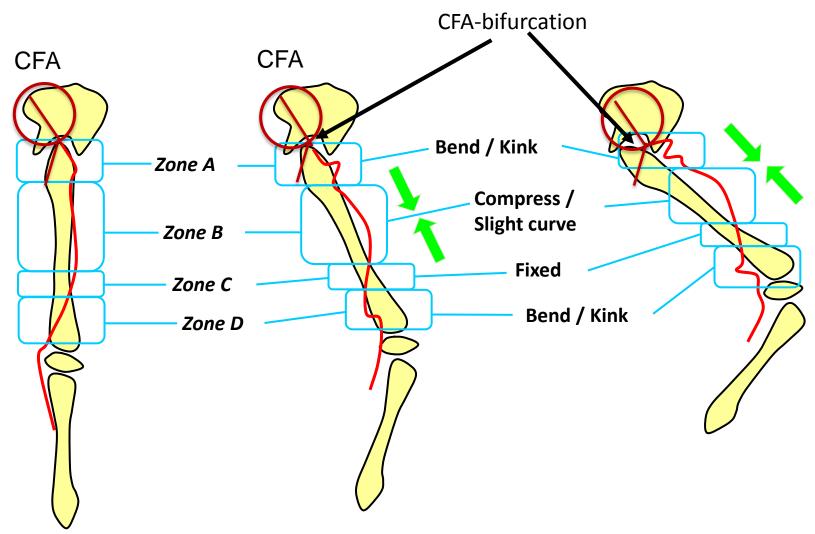

CFA Standard Treatment

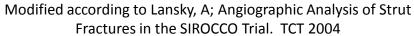
Open surgical revascularisation

- Thrombendartherectomy
 - atheromateous lesions
- Embolectomy
 - embolic lesions

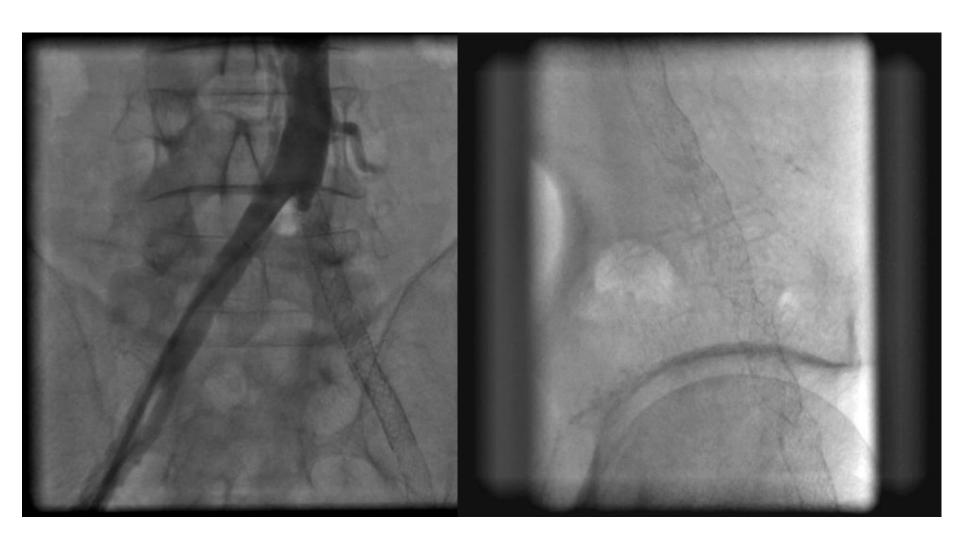
Limitations:

- Scarred tissue
- Obesity
- Morbidity up to 5%:
 - Major hematoma
 - Wound infection
 - Surgical revision

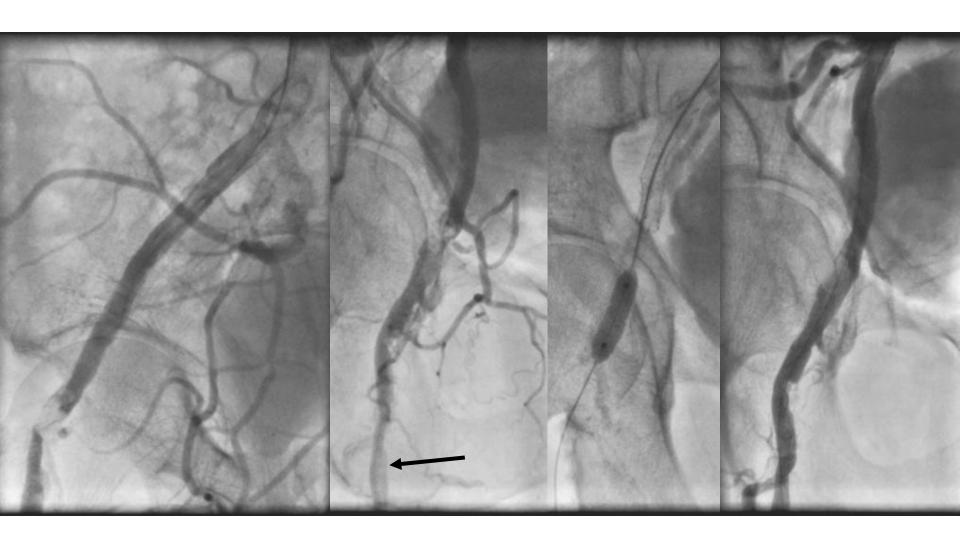




Cardon A et al. Endarteriectomy of the femoral tripod: long-term results and analysis of failure factors. Ann Chir 2001;126:777-82.


Femoro-popliteal Artery - Biomechanics

Stent Fractures Distal EIA


Stent Fractures Distal EIA

CFA – Angioplasty *Balloon Angioplasty*

CFA - Stent Bail-out Stenting

CFA – Stent Bail-out Stenting

1: Double balloon-PTA of the CFA-bifurcation. 2: After PTA.

CFA – Stent Bail-out Stenting

1: Kissing balloon-PTA of the CFA-bifurcation. 2: After PTA. 3: After SMART-stent CFA.

Patients / Lesion Flow-Chart

Total of 11493 patients treated at our center (9.1996 \rightarrow 12.2007) = mean 958 \pm 679 patients/year

CFA Angioplasty Bad Krozingen Experience

466 Patients presenting with a CFA lesion / 516 CFA Interventions

Included Patients / Interventions:

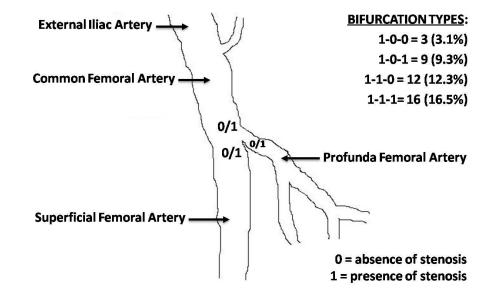
321 Patients / 360 Interventions,

(= 2.8% of all patients treated at our center)

Excluded Patients / Interventions (=145/156):

- 31 VCD-related stenosis
- 9 CFA bleedings
- 64 CFA thrombo-embolic lesions
- 28 stenosis <70% (visual estimation at angio)
- 20 iatrogenic CFA dissections
- 4 other causes

CFA Lesions Characteristics:


- 64 (17.8%) CFA total occlusion
- 140 (38.9%) CFA bifurcation lesion
 - o 67 (18.6%) 1-1-1 lesion
 - o 27 (7.5%) 1-1-0 lesion
 - o 26 (7.2%) 1-0-1 lesion
 - o 20 (5.6%) 1-0-0 lesion
- 50 (13.9) post-TEA restenosis
- 79 (21.9%) associated with a SFA occlusion
- 93 (25.8%) associated with a DFA lesion

Interventions:

- 97 (26.9%) isolated CFA Intervention
- 157 (43.6%) CFA + homolateral Iliac Intervention
- 152 (42.2%) CFA + homolateral Fem-pop. Intervention

Performed Interventions:

- 355 (98.6%) PTA
- 133 (36.9%) PTA + stent
 - 122 (33.9%) one stent
 - o 11 (3.1%) two stents
- 30 (8.3%) special techniques:
 - o 25 (6.9%) Silverhawk Atherectomy device
 - o 5 (1.4%) Kissing Balloon

CFA = Common Femoral Artery

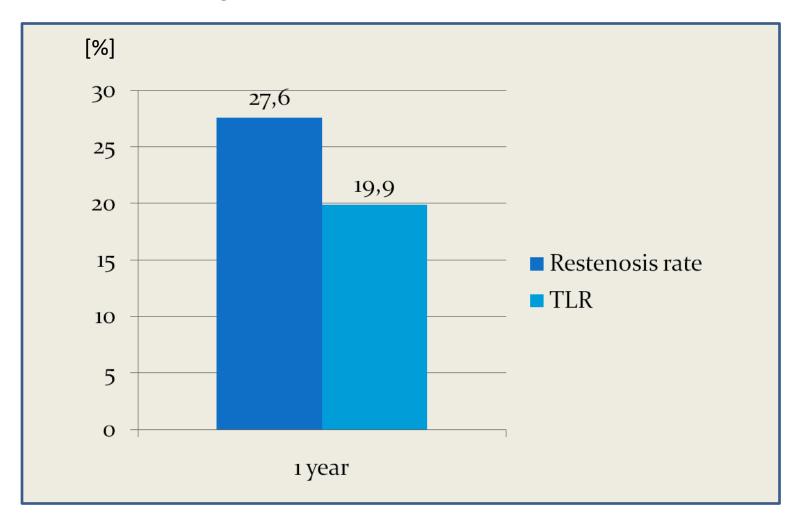
TEA = surgical Thrombendarterectomy

DFA = Deep Femoral Artery

PTA = Percutaneous Transluminal Angioplasty

VCD = Vascular Closure Device SFA = Superficial Femoral Artery

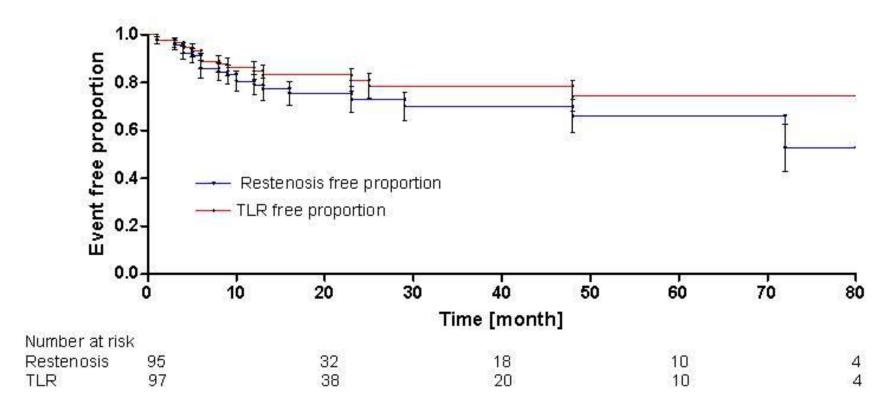
Fem-pop. = Femoro-popliteal


CFA-Angioplasty

Acute Technical Outcomes & In-Hospital Events

Procedural success (≤30% stenosis)	334/360 (92.8%)		
Peri-procedural complications	23/360 (6.4%)		
- Contralateral access site complications	6/360 (1.7%)		
- Distal embolization	6/360 (1.7%)		
- Thrombotic CFA occlusion	6/360 (1.7%)		
In-hospital myocardial infarction	4 (1.2%)		
In-hospital minor amputation	1 (0.3%)		

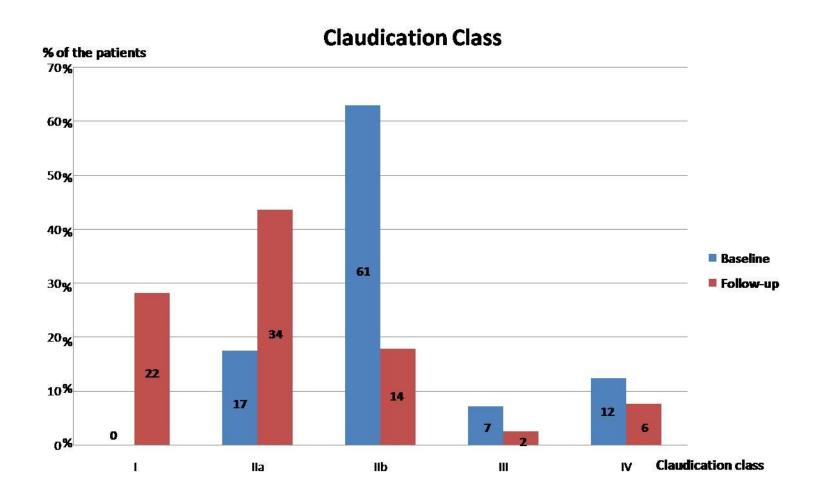
CFA Angioplasty 1-year Technical Outcomes


Subgroup Analysis Stented lesions vs. non-stented lesions

	Stented (n = 133)	Nonstented (n = 227)	OR 95% CI	<i>P</i> Value
Failure	2.2%	10.1%	0.20 (0.06-0.69)	0.005
Complications	7.5%	5.7%	1.34 (0.57-3.14)	0.510
Restenosis	20.0%	31.8%	0.53 (0.29-0.97)	0.046
1-Year TLR	13.1%	23.6%	0.49 (0.26-0.91)	0.021

CFA Only Cohort

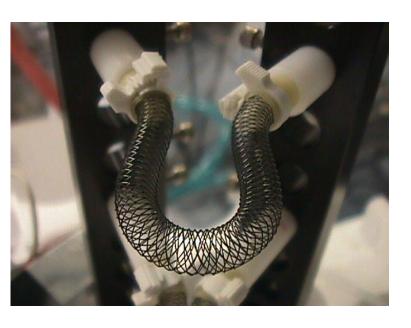
Kaplan Meier curves for cumulative survival rate without restenosis (blue line) and TLR (red line)



Points of censure in both curves include death, patients lost of follow-up as well as patients without adequate clinical and duplex-US data.

Clinical Outcomes - Functional Class (Fontaine) Improvements

The numbers in the columns correspond to the effective number of the analyzed patients



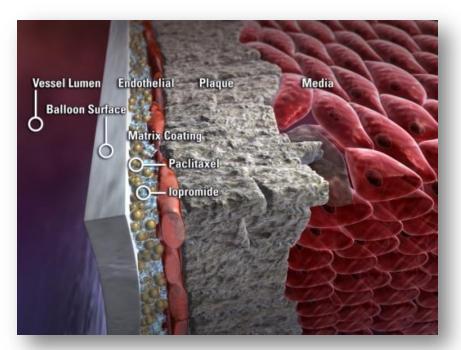
Stent-Angioplasty of CFA

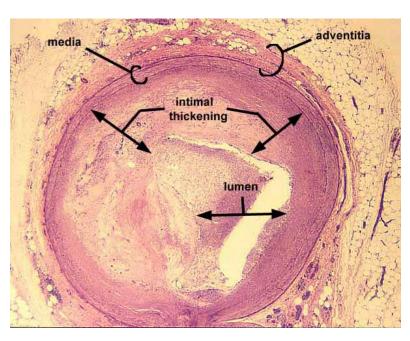
Dedicated Stents

Supera Vascular Stent Interwoven Nitinol Design GORE® TIGRIS Vascular Stent Dual Component Stent Design

Subgroup Analysis Atherectomy vs. POBA +/- Stent

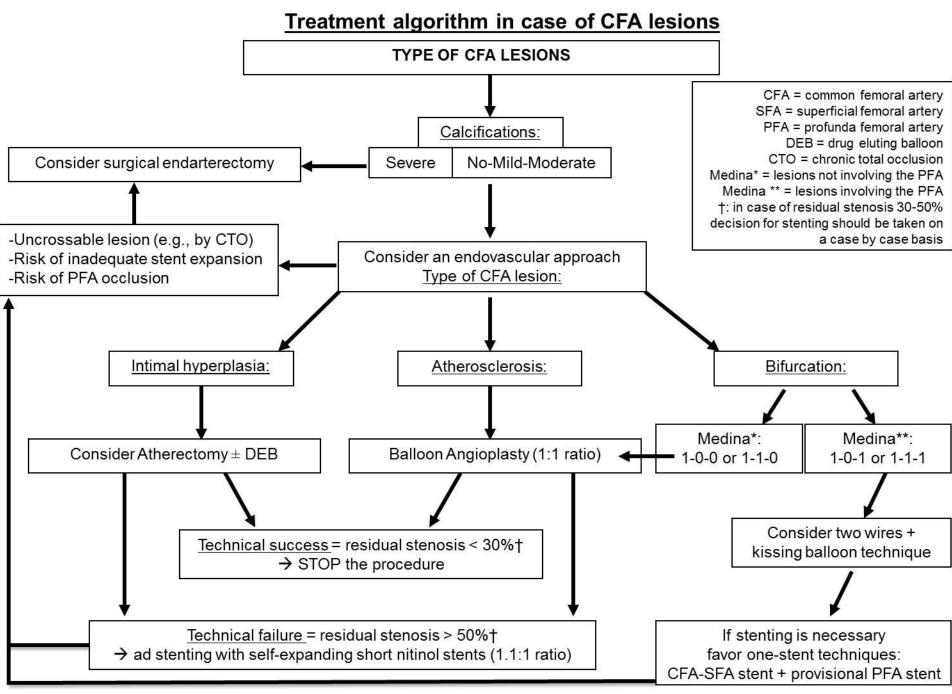
	Atherectomy (N=25) %	PTA ±stent (N=335) %	RR	95% CI	P value
Failures	4.0	7.5	0.51	0.07 – 3.98	1
Complications	0.	6.9	0.26	0.01 – 4.42	0.38
Restenosis	11.8	28.7	0.35	0.07 – 1.48	0.16
1 yr TLR	4.8	20.9	0.18	0.02 – 1.42	0.09




The Potential New Solution:

Drug Coated Balloon angioplasty with or w/o upfront atherectomy / mechanical thrombectomy

Rationale for plaque excision and drug-delivery as an essential combination



- Mechanically recanalize the vessel without overstretch
- Big artery diameter >> incomplete plaque excision
- Remove the perfusion barrier better and more homogenous drug uptake?
- Reduce the likelihood of bail-out stenting

Bonvini et al. J Vasc Interv Radiol 2013; 24:175–183

Is Endovascular Treatment of CFA Lesions Ready for Primetime?

Summary

- Surgical reconstruction of CFA is still considered the gold standard despite the lack of relevant data.
- However, PTA with or without stenting is a valid alternative in patients being unfit for surgery.
- Stent fractures seem not to play the same role as in the femoro-popliteal segment
- Even calcified lesions can be successfully treated with DA (Turbohawk).
- DCB might further improve the long-term outcome
- An RCT comparing surgery with endovascular therapy including DEB is on the way.

Is Endovascular Treatment of CFA Lesions Ready for Primetime? Future

PESTO-CFA

<u>Percutaneous Intervention versus Surgery in the Treatment of Common Femoral Artery Lesions</u>

A prospective, multi-centre, randomised study

PESTO-CFA Study

Title:	PESTO-CFA
Aim:	Non inferiority study comparing DCB based endovascular therapy and suigical therapy in the treatment of atherosclerotic CFA disease
Studiy design:	Prospective, multicenter, randomized, controlled study, 1:1 randomization Follow-up at 6 months, 1, 2 and 5 years
Patient recruitment:	260 patients. Study duration 6.5 years (recruitment time 18 months, follow-up 5 years)

